Partial Solution Set, Leon §5.5

5.5.2b We have $\mathbf{u}_1 = \left(\frac{1}{3\sqrt{2}}, \frac{1}{3\sqrt{2}} \frac{-4}{3\sqrt{2}}\right)^T$, $\mathbf{u}_2 = \left(\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right)^T$, and $\mathbf{u}_3 = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)^T$. Let $\mathbf{x} = (1, 1, 1)^T$. Write \mathbf{x} as a linear combination of \mathbf{u}_1 , \mathbf{u}_2 , and \mathbf{u}_3 , and use Parseval's formula to compute $||\mathbf{x}||$.

Solution: We know from part (a) that $[\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3]$ is an orthonormal basis for \mathbb{R}^3 . By Theorem 5.5.2, we know that

$$\mathbf{x} = (\mathbf{x}^T \mathbf{u}_1) \mathbf{u}_1 + (\mathbf{x}^T \mathbf{u}_2) \mathbf{u}_2 + (\mathbf{x}^T \mathbf{u}_3) \mathbf{u}_3$$
$$= \frac{-2}{3\sqrt{2}} \mathbf{u}_1 + \frac{5}{3} \mathbf{u}_2 + 0 \mathbf{u}_3$$
$$= \frac{-2}{3\sqrt{2}} \mathbf{u}_1 + \frac{5}{3} \mathbf{u}_2$$

By Parseval's formula, $||\mathbf{x}|| = \left(\frac{4}{18} + \frac{25}{9}\right)^{1/2} = \sqrt{3}$.

5.5.3 We are given S, the subspace spanned by \mathbf{u}_2 and \mathbf{u}_3 of the preceding exercise, and $\mathbf{x} = (1, 2, 2)^T$. We are to find the projection \mathbf{p} of \mathbf{x} onto S, and to verify that $\mathbf{p} - \mathbf{x} \in S^{\perp}$.

Solution: The projection is

$$\mathbf{p} = (\mathbf{x}^T \mathbf{u}_2) \mathbf{u}_2 + (\mathbf{x}^T \mathbf{u}_3) \mathbf{u}_3$$
$$= \frac{8}{3} \mathbf{u}_2 - \frac{1}{\sqrt{2}} \mathbf{u}_3$$
$$= \left(\frac{23}{18}, \frac{41}{18}, \frac{8}{9}\right)^T$$

So $\mathbf{p} - \mathbf{x} = (\frac{5}{18}, \frac{5}{18}, -\frac{10}{9})^T$. It is easy to show that $\mathbf{p} - \mathbf{x} \in S^{\perp}$, by showing that it is orthogonal to each of $\mathbf{u}_2, \mathbf{u}_3$.

Note: A close look at the computation by which the projection was obtained is consistent with the observation (Corollary 5.5.9) that the projection operator is UU^T , where U in this case is the matrix whose columns are \mathbf{u}_1 and \mathbf{u}_2 .

5.5.5 Let \mathbf{u}_1 and \mathbf{u}_2 form an orthonormal basis for R^2 , and let \mathbf{u} be a unit vector in R^2 . If $\mathbf{u}^T\mathbf{u}_1 = \frac{1}{2}$, determine the value of $|\mathbf{u}^T\mathbf{u}_2|$.

Solution: Since **u** is a unit vector, and since \mathbf{u}_1 and \mathbf{u}_2 form an orthonormal basis for R^2 , then by Parseval's formula we know that $(\mathbf{u}^T\mathbf{u}_1)^2 + (\mathbf{u}^T\mathbf{u}_2)^2 = 1$. Given $\mathbf{u}^T\mathbf{u}_1 = \frac{1}{2}$, it follows that $(\mathbf{u}^T\mathbf{u}_2)^2 = \frac{3}{4}$, so $|\mathbf{u}^T\mathbf{u}_2| = \frac{\sqrt{3}}{2}$.

5.5.6 Let $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ be an orthonormal basis for an inner product space V, and let

$$\mathbf{u} = \mathbf{u}_1 + 2\mathbf{u}_2 + 2\mathbf{u}_3 \text{ and } \mathbf{v} = \mathbf{u}_1 + 7\mathbf{u}_3.$$

Determine the value of each of the following:

- (a) $\langle \mathbf{u}, \mathbf{v} \rangle$
- (b) $||\mathbf{u}||$ and $||\mathbf{v}||$
- (c) The angle θ between **u** and **v**.

Solution:

- (a) By Corollary 5.5.3, $\langle \mathbf{u}, \mathbf{v} \rangle = 1 + 0 + 14 = 15$.
- (b) By Parseval's formula, $||\mathbf{u}|| = (1+4+4)^{1/2} = 3$, and $||\mathbf{v}|| = (1+0+49)^{1/2} = 5\sqrt{2}$.
- (c) Using our results from (a) and (b), we have

$$\theta = \arccos \frac{15}{15\sqrt{2}} = \arccos \frac{1}{\sqrt{2}} = \frac{\pi}{4}.$$

5.5.14 Let **u** be a unit vector in \mathbb{R}^n , and let $H = I - 2\mathbf{u}\mathbf{u}^T$. Show that H is both orthogonal and symmetric and hence is its own inverse.

Proof: The symmetry of H follows from the symmetry of I and the symmetry of $\mathbf{u}\mathbf{u}^T$, i.e., $\left(\mathbf{u}\mathbf{u}^T\right)^T = \mathbf{u}^T\mathbf{u}^T = \mathbf{u}\mathbf{u}^T$, along with the fact that the sum of symmetric matrices is symmetric. To show that H is orthogonal, we show that $H^TH = I$:

$$H^{T}H = ((I - 2\mathbf{u}\mathbf{u}^{T})^{T}(I - 2\mathbf{u}\mathbf{u}^{T})$$

$$= I^{T}I - 4\mathbf{u}\mathbf{u}^{T} + 4\mathbf{u}\mathbf{u}^{T}\mathbf{u}\mathbf{u}^{T}$$

$$= I^{2} - 4\mathbf{u}\mathbf{u}^{T} + 4\mathbf{u}(\mathbf{u}^{T}\mathbf{u})\mathbf{u}^{T}$$

$$= I - 4\mathbf{u}\mathbf{u}^{T} + 4\mathbf{u}\mathbf{u}^{T}$$

$$= I.$$

But if H is both orthogonal and symmetric, then $H^{-1} = H^T = H$.

5.5.17 Show that if U is $n \times n$ orthogonal, then $\mathbf{u}_1 \mathbf{u}_1^T + \mathbf{u}_2 \mathbf{u}_2^T + \cdots + \mathbf{u}_n \mathbf{u}_n^T = I$.

Solution: Since U is orthogonal, then (see exercise 10 in this section) so is U^T , i.e., $UU^T = I$. But then

$$I = UU^{T}$$

$$= \begin{bmatrix} \mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{n} \end{bmatrix} \begin{bmatrix} \mathbf{u}_{1}^{T} \\ \mathbf{u}_{2}^{T} \\ \vdots \\ \mathbf{u}_{n}^{T} \end{bmatrix}$$

$$= \mathbf{u}_{1}\mathbf{u}_{1}^{T} + \mathbf{u}_{2}\mathbf{u}_{2}^{T} + \cdots + \mathbf{u}_{n}\mathbf{u}_{n}^{T},$$

and the result follows.

5.5.19.b.ii Let $A = \begin{bmatrix} 1/2 & -1/2 \\ 1/2 & -1/2 \\ 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}$.

Solve the least squares problem $A\mathbf{x} = \mathbf{b}$ for $\mathbf{b} = (1, 2, 3, 4)^T$.

Solution: Since the columns of A constitute an orthonormal set, it follows that $A^TA = I$, and the normal equations reduce to

$$\hat{\mathbf{x}} = A^T \mathbf{b} = \begin{bmatrix} 1/2 & 1/2 & 1/2 & 1/2 \\ -1/2 & -1/2 & 1/2 & 1/2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \end{bmatrix}.$$